TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 358, Number 8, Pages 3637–3649 S 0002-9947(05)03821-3 Article electronically published on December 21, 2005

UNITAL BIMODULES OVER THE SIMPLE JORDAN SUPERALGEBRA D(t)

CONSUELO MARTÍNEZ AND EFIM ZELMANOV

ABSTRACT. We classify indecomposable finite dimensional bimodules over Jordan superalgebras D(t), $t \neq -1, 0, 1$.

1. Introduction

Throughout this paper all algebras are considered over a ground field k of characteristic zero. A (linear) Jordan algebra is a vector space J with a binary bilinear operation $(x, y) \to xy$ satisfying the following identities:

$$xy = yx,$$
$$(x^2y)x = x^2(yx).$$

Respectively a Jordan superalgebra is a $\mathbb{Z}/2\mathbb{Z}$ -graded algebra $J=J_{\bar{0}}+J_{\bar{1}}$ satisfying the graded identities

$$\begin{aligned} xy &= (-1)^{|x||y|}yx, \\ ((xy)z)t + (-1)^{|y||z|+|y||t|+|z||t|}((xt)z)y + (-1)^{|x||y|+|x||z|+|x||t|+|z||t|}((yt)z)x \\ &= (xy)(zt) + (-1)^{|y||z|}(xz)(yt) + (-1)^{|t|(|y|+|z|)}(xt)(yz). \end{aligned}$$

In [K2] (see also I. L. Kantor [Ka1, Ka2]), V. Kac classified simple finite dimensional Jordan superalgebras over an algebraically closed field of zero characteristic. This classification included the 1-parametric family of 4-dimensional superalgebras D_t , which corresponds to the 1-parametric family of 17-dimensional Lie superalgebras via the Tits-Kantor-Koecher construction,

$$D_t = (ke_1 + ke_2) + (kx + ky),$$

with the products

$$e_i^2 = e_i$$
, $e_1 e_2 = 0$, $e_i x = \frac{1}{2} x$, $e_i y = \frac{1}{2} y$, $xy = e_1 + te_2$, $i = 1, 2$.

The superalgebra D_t is simple if $t \neq 0$. For t = 0 the superalgebra D_0 is a unital hull of the 3-dimensional nonunital Kaplansky superalgebra K_3 , $D_0 = K_3 + k1$. In the case t = -1, the superalgebra D_{-1} is isomorphic to the Jordan superalgebra $M_{1,1}(k)^+$ of 2×2 matrices.

Received by the editors December 15, 2003 and, in revised form, August 18, 2004 and August 28, 2004.

 $^{2000\} Mathematics\ Subject\ Classification.\ Primary\ 17C70.$

The first author was partially supported by BFM 2001-3239-C03-01 and FICYT PR-01-GE-15. The second author was partially supported by NSF grant DMS-0071834.

A Jordan bimodule V over a Jordan (super)algebra J is a vector space with operations $V \times J \to V$, $J \times V \to V$ such that the split null extension V + J is a Jordan (super)algebra (see [J1]).

We denote a Jordan triple product by $\{x,y,z\} = (xy)z + x(yz) - (-1)^{|x||y|}y(xz)$. Let e be the identity of J and let $V = \{e,V,e\} + \{1-e,V,e\} + \{1-e,V,1-e\}$ be the Peirce decomposition. Then $\{e,V,e\}$ is a unital bimodule over J, that is, e is an identity of $\{e,V,e\} + J$. The component $\{1-e,V,e\}$ is a one-sided module, that is, $\{J,\{1-e,V,e\},J\} = (0)$.

Finally, $\{1 - e, V, 1 - e\}$ is a bimodule with zero multiplication.

One-sided finite dimensional bimodules over D_t were classified in [MZ]. In this paper we classify finite dimensional unital bimodules, thus finishing the classification of finite dimensional bimodules over D_t . Bimodules over semisimple finite dimensional Jordan algebras have been completely classified by N. Jacobson (see [J1], [J3]).

2. Irreducible modules

For a set X let V(X) denote the free D_t -bimodule on the set of free generators X (see [J1]). Consider the linear operator $R(a): V(X) \to V(X), v \to v \cdot a, v \in V(X), a \in J$.

The algebra M(J) generated by all operators R(a), $a \in J$, is called the universal multiplicative enveloping algebra of J (see [J1]).

Assume that $t \neq -1$ and consider the following elements of $M(D_t)$:

$$E = \frac{2}{t+1}R(x)^2, \ F = \frac{-2}{t+1}R(y)^2, \ H = \frac{-2}{t+1}(R(x)R(y) + R(y)R(x)).$$

It is easy to see that [F, H] = 2F, [E, H] = -2E, [E, F] = H, $kE + kF + kH \simeq sl_2(k)$.

Note that xH = -x, yH = y.

Definition 2.1. For $\sigma \in \{\bar{0}, \bar{1}\}$, $i \in \{0, 1, \frac{1}{2}\}$, $\lambda \in k$, a Verma module $V(\sigma, i, \lambda)$ is defined as a unital D_t -bimodule presented by one generator v of parity σ and the relations $vR(e_1) = iv$, vR(y) = 0, $vH = \lambda v$.

Remark. $V(\sigma, i, \lambda)^{op} = V(1 - \sigma, i, \lambda)$.

Lemma 2.1. For an arbitrary $\lambda \in k$, $V(\sigma, \frac{1}{2}, \lambda) \neq (0)$.

Proof. Let (k,+) be the additive group of the field k. We will denote elements of (k,+) as u^{μ} , $\mu \in k$, $u^{\mu}u^{\nu} = u^{\mu+\nu}$. Consider the group algebra $\Lambda = k(k,+) = \{\sum_i \mu_i u^{\nu_i}; \mu_i, \nu_i \in k\}$ and the derivation $D: u^{\mu} \to \mu u^{\mu-1}$ of Λ .

Let $R = \langle \Lambda, D \rangle = \sum_{i \geq 0} \Lambda D^i$, aD - Da = D(a), $a \in \Lambda$, be the Weyl algebra. Consider the following 2×2 matrices over R:

$$x = \begin{pmatrix} 0 & -(t+1)D + (1-t)u^{-1} \\ -(t+1)D & 0 \end{pmatrix}, \ y = \begin{pmatrix} 0 & u \\ u & 0 \end{pmatrix},$$
$$e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ e_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

It is easy to see that $\frac{1}{2}(xy - yx) = \begin{pmatrix} 1 & 0 \\ 0 & t \end{pmatrix}$, so e_1, e_2, x, y span a superalgebra which is isomorphic to D_t .

Consider the odd element $v = \begin{pmatrix} 0 & u^{\lambda} \\ u^{\lambda} & 0 \end{pmatrix}$. Then $v \cdot e_i = \frac{1}{2}v$ and vy - yv = 0. It is straightforward to verify that $vH = \lambda v$. This implies that $V(\bar{1}, \frac{1}{2}, \lambda) \neq (0)$. Consequently, the module $V(\bar{0}, \frac{1}{2}, \lambda) \neq (0)$. Lemma 2.1 is proved.

Lemma 2.2. $V(\sigma, 1, \lambda) = (0)$ unless $\lambda = \frac{-2}{t+1}$.

Proof. Let U(x,y) = R(x)R(y) - R(y)R(x) - R([x,y]). Clearly, $vU(x,y) = -\{x,v,y\} \in \{e_2, V, e_2\}$. Hence, $vU(x,y)R(e_1) = 0$. We have

$$\begin{aligned} vU(x,y)R(e_1) &= v(R(x)R(y) - R(y)R(x) - R(e_1 + te_2))R(e_1) \\ &= v(R(x)R(y) + R(y)R(x) - R(e_1 + te_2))R(e_1) \\ &= v(-\frac{t+1}{2}H - R(e_1 + te_2))R(e_1) \\ &= -\frac{t+1}{2}\lambda v - v = -(\lambda \frac{t+1}{2} + 1)v = 0, \end{aligned}$$

which implies v=0 unless $\lambda=-\frac{2}{t+1}$. Lemma 2.2 is proved.

Lemma 2.3. $V(\sigma, 0, \lambda) = 0$ unless $\lambda = \frac{-2t}{t+1}$.

Proof. Arguing as above we get

$$vU(x,y)R(e_2) = v(R(x)R(y) - R(y)R(x) - R(e_1 + te_2))R(e_2)$$

= $v(-\frac{t+1}{2}H - R(e_1 + te_2))R(e_2) = (-\frac{t+1}{2}\lambda - t)v = 0,$

which implies v=0 unless $\lambda=-\frac{2t}{t+1}$. Lemma 2.3 is proved.

To establish that $V(\sigma, 1, -\frac{2}{t+1}) \neq (0)$, $V(\sigma, 0, -\frac{2t}{t+1}) \neq (0)$ we need to recall some facts about one-sided bimodules (see [MZ]).

A Jordan bimodule V over a Jordan (super)algebra J is said to be one-sided if $\{J,V,J\}=(0)$. If J is special with a universal associative enveloping algebra U(J) (see [J1]), then a one-sided bimodule V can be viewed as a right U(J)-module. For $a\in J,\ v\in V$ we have $v\cdot a=\frac{1}{2}va$, where the left-hand side is the bimodule action, whereas the right-hand side is the right module action by $a\in U(J)$. Similarly, we can make V a left module over U(J) via $\frac{1}{2}av=a\cdot v$.

The tensor product $V \otimes V$ is an associative bimodule over U(J): $a(v \otimes w)b = av \otimes wb$; $a, b \in J$; $v, w \in V$.

Consider the elements $e = \frac{1}{4(1+t)}x^2$, $f = -\frac{1}{1+t}y^2$, $h = -\frac{1}{2(1+t)}(xy + yx)$ in $U(D_t)$. We have [e, f] = h, [f, h] = 2f, [e, h] = -2e.

In [MZ] the following one-sided Verma bimodules over D_t were introduced.¹

The right module $V_1(t)$ over $U(D_t)$ is presented by one even generator v and the relations $ve_1 = v$, $vy^2 = 0$, $vh = (\frac{-1-2t}{1+t})v$.

The right module $V_2(t)$ over $U(D_t)$ is presented by one even generator v and the relations $ve_1 = v$, vy = 0, $vh = -\frac{1}{1+t}v$.

The tensor square $V_2(t) \otimes V_2(t)$ is a bimodule over $U(D_t)$, hence a Jordan bimodule over D_t via

$$(v' \otimes v'') \cdot a = \frac{1}{2} (v' \otimes v'' a + (-1)^{|a|(|v'| + |v''|)} av' \otimes v'').$$

¹Our notation differs from [MZ]. For example, we assume that $\frac{1}{2}(xy-yx)=e_1+te_2$ in $U(D_t)$.

We have

$$(v \otimes v) \cdot e_1 = v \otimes v, \ (v \otimes v) \cdot y = 0, \ (v \otimes v)H = -\frac{2}{t+1}(v \otimes v).$$

We proved

Lemma 2.4. $V(\sigma, 1, -\frac{2}{t+1}) \neq (0)$.

Now consider the tensor square $V_1(t) \otimes V_1(t)$ and the element $vy \otimes vy$. We have $(vy \otimes vy) \cdot e_1 = 0$, $(vy \otimes vy) \cdot e_2 = vy \otimes vy$, $(vy \otimes vy) \cdot y = 0$, $(vy \otimes vy)H = -\frac{2t}{t+1}vy \otimes vy$. We proved

Lemma 2.5. $V(\sigma, 0, -\frac{2t}{1+t}) \neq (0)$.

Lemma 2.6. For an arbitrary $\lambda \in k$:

- (a) The elements $vR(x)^j$, $vR(x)R(e_1)R(x)^j$, $j \ge 0$, form a basis of $V(\sigma, \frac{1}{2}, \lambda)$.
- (b) The elements $vR(x)^j$, $j \ge 0$, form a basis of $V(\sigma, i, \lambda)$, i = 0 (and $\lambda = \frac{-2t}{1+t}$) or 1 (and $\lambda = \frac{-2}{1+t}$).

Proof. (a) Let us show that the elements $vR(x)^j$, $vR(x)R(e_1)R(x)^j$, $j \geq 0$, span $V(\sigma, \frac{1}{2}, \lambda)$.

Let v be a highest weight vector in a Verma module $V(\sigma, \frac{1}{2}, \lambda)$. Consider an operator $W = R(a_1) \cdots R(a_s)$, where $a_i = e_1$ or x or y, $1 \le i \le s$.

We will use an induction on s and assume that operators of length < s map v into a linear combination of suggested elements.

If $a_1 = e_1$, then $vW = \frac{1}{2}vR(a_2)\cdots R(a_s)$. If $a_1 = y$, then vW = 0. Let $a_1 = x$. If $a_2 = y$, then

$$vW = v(R(x)R(y) + R(y)R(x))R(a_2) \cdots R(a_s) = -\frac{1+t}{2}\lambda vR(a_2) \cdots R(a_s).$$

If $a_j = y$, where $j \ge 3$, then we use the Jordan identity to move y to the left modulo shorter operators. Thus we can assume that $a_j = e_1$ or $x, 1 \le j \le s$.

Let j be the minimal index such that $a_j = e_1$. We see that $j \geq 2$. If $j \geq 3$, then we can again use the Jordan identity to move e_1 to the left. Hence, either e_1 does not occur in W or j = 2. Let $W = R(x)R(e_1)R(a_3)\cdots R(a_s)$. Let $j' \geq 3$ be the minimal index such that $a_{j'} = e_1$. If j' = 3, then $vR(x)R(e_1)R(e_1) = vR(x)R(e_1)$.

If j'=4, then $vR(x)R(e_1)R(x)R(e_1)=\frac{1}{2}vR(x)R(e_1)R(x)$. If $j'\geq 5$, then we again use the Jordan identity to decrease j'. We proved that $V(\sigma,\frac{1}{2},\lambda)$ is spanned by $vR(x)^j$, $vR(x)R(e_1)R(x)^{j-1}$. Now, it remains to prove that these elements are linearly independent.

We have

$$vR(x)^{2i}R(y) = \frac{1+t}{2}ivR(x)^{2i-1}, \ i \ge 1;$$

$$vR(x)^{2i+1}R(y) = -\frac{1+t}{2}(\lambda - i)vR(x)^{2i}; \ vR(x)^{2i}R(e_1) = \frac{1}{2}vR(x)^{2i};$$

$$vR(x)^{2i+1}R(e_1) = vR(x)R(e_1)R(x)^{2i};$$

$$vR(x)R(e_1)R(x)^{2i}R(y) = -\frac{(t+1)(\lambda - 1) + 2}{4}vR(x)^{2i}$$

$$+ \frac{1+t}{2}ivR(x)R(e_1)R(x)^{2i-1}, \ i \ge 1;$$

$$vR(x)R(e_1)R(y) = -\frac{(t+1)(\lambda - 1) + 2}{4}v;$$

$$vR(x)R(e_1)R(x)^{2i+1}R(y) = \frac{(t+1)(\lambda-1)+2}{4}vR(x)^{2i+1}$$
$$-\frac{1+t}{2}(\lambda-i-1)vR(x)R(e_1)R(x)^{2i};$$
$$vR(x)R(e_1)R(x)^{2i}R(e_1) = vR(x)R(e_1)R(x)^{2i};$$
$$vR(x)R(e_1)R(x)^{2i+1}R(e_1) = \frac{1}{2}vR(x)R(e_1)R(x)^{2i+1}.$$

Let us first check linear independence under the assumption that $\lambda \notin \mathbb{Z}_{\geq 0}$, $\lambda \neq \frac{t-1}{t+1}$, $\lambda \neq \frac{1-t}{t+1}$. We need to verify that $vR(x)R(e_1)R(x)^i \neq 0$, $vR(x)R(e_2)R(x)^i \neq 0$ for all $i \geq 0$.

From

$$vR(x)R(e_1)R(y) = -\frac{(t+1)(m-1)+2}{4}v \neq 0,$$

$$vR(x)R(e_2)R(y) = -\frac{(t+1)(m+1)-2}{4}v \neq 0$$

it follows that $vR(x)R(e_1) \neq 0$, $vR(x)R(e_2) \neq 0$. Now suppose that

$$vR(x)R(e_1)R(x)^i \neq 0, vR(x)R(e_2)R(x)^i \neq 0$$
 for $i \leq k$.

Let k be even. Then

$$vR(x)R(e_1)R(x)^{k+1}R(y) = \frac{(t+1)(\lambda-1)+2}{4}vR(x)^{k+1}$$
$$-\frac{1+t}{2}(\lambda-\frac{k+2}{2})vR(x)R(e_1)R(x)^k$$
$$= (\frac{(t+1)(\lambda-1)+2}{4} - \frac{1+t}{2}(\lambda-\frac{k+2}{2}))vR(x)R(e_1)R(x)^k$$
$$+ \frac{(t+1)(\lambda-1)+2}{4}vR(x)R(e_2)R(x)^k \neq 0.$$

The case when k is odd can be treated similarly, and similarly

$$vR(x)R(e_2)R(x)^{k+1}R(y) \neq 0.$$

We have proved assertion (a) for $\lambda \notin \mathbb{Z}_{\geq 0}$, $\lambda \neq \frac{t-1}{t+1}$, $\lambda \neq \frac{1-t}{t+1}$.

Now consider a vector space \tilde{V} with a basis v_i , $i \in \mathbb{Z}_{\geq 0}$; v'_j , $j \in \mathbb{Z}_{>0}$, and define a D_t -bimodule structure via:

$$\begin{split} v_iR(x) &= v_{i+1}; v_0R(y) = 0; v_{2i}R(y) = \frac{1+t}{2}iv_{2i-1}, i \geq 1; \\ v_{2i+1}R(y) &= -\frac{1+t}{2}(\lambda-i)v_{2i}; v_{2i}R(e_1) = \frac{1}{2}v_i, v_{2i+1}R(e_1) = v'_{2i+1}; \\ v'_jR(x) &= v'_{j+1}; v'_{2i+1}R(y) = -\frac{(t+1)(\lambda-1)+2}{4}v_{2i} + \frac{1+t}{2}iv'_{2i}, i \geq 1; \\ v'_1R(y) &= -\frac{(t+1)(\lambda-1)+2}{4}v_0; v'_{2i}R(y) \\ &= -\frac{1+t}{2}(\lambda-i)v'_{2i-1} + \frac{(t+1)(\lambda-1)+2}{4}v_{2i-1}, i \geq 1; \\ v'_{2i}R(e_1) &= \frac{1}{2}v'_{2i}; v'_{2i+1}R(e_1) = v'_{2i+1}. \end{split}$$

For a fixed i the equalities

$$\begin{split} w(R(a)R(b)R(c) + (-1)^{|a||b|+|a||c|+|b||c|}R(c)R(b)R(a) + (-1)^{|b||c|}R((ac)b) \\ - R(ab)R(c) - (-1)^{|b||c|}R(ac)R(b) - (-1)^{|a|(|b|+|c|)}R(bc)R(a)) &= 0, \end{split}$$

where $w = v_i$ or v_i' ; a, b, c = x or y or e_1 amount to a bunch of at most quadratic equalities involving λ . Since all these equalities hold for all $\lambda \notin \mathbb{Z}_{\geq 0}$, $\lambda \neq \frac{t-1}{t+1}$, $\lambda \neq \frac{1-t}{t+1}$, it follows that these equalities hold for all λ . Hence for all λ , \tilde{V} is a Jordan bimodule over D_t with a highest weight element v_0 and the highest weight λ . This implies assertion (a) of the lemma.

Now consider the bimodules $V(\sigma, i, \lambda)$, i = 0 or 1. Arguing as above we can prove that $V(\sigma, i, \lambda)$ is spanned by $vR(x)^i$, $i \ge 0$. To show that the elements $vR(x)^i$ are all nonzero, we can use the embedding of $V(\sigma, i, \lambda)$ into the tensor product of one-sided Verma modules as in the proofs of Lemmas 2.4 and 2.5. Lemma 2.6 is proved.

Corollary 2.1. Every nonzero Verma bimodule $V(\sigma, i, \lambda)$ contains a largest proper sub-bimodule $M(\sigma, i, \lambda)$. Hence there exists a unique irreducible D_t -bimodule $Irr(\sigma, i, \lambda) = V(\sigma, i, \lambda)/M(\sigma, i, \lambda)$ generated by an element of the highest weight λ .

Lemma 2.7. Every finite dimensional irreducible D_t -bimodule is isomorphic to $Irr(\sigma, i, \lambda)$ for some σ, i, λ .

Proof. Let V be a finite dimensional irreducible D_t -bimodule. Then V is a module over the Lie algebra $sl_2(k) = kE + kF + kH$. From the representation theory of $sl_2(k)$ (see [J2]) it follows that the action of H on V is diagonalizable, $V = \sum_{\gamma} V_{\gamma}$ is the sum of eigenspaces. Choose an eigenvalue λ such that $V_{\lambda} \neq (0)$, $V_{\lambda+1} = (0)$.

Let $0 \neq v \in V_{\lambda,\sigma}$, $\sigma = \bar{0}$ or $\bar{1}$. Consider a Peirce decomposition, $v = v_0 + v_1 + v_{\frac{1}{2}}$. Clearly $v_i \in V_{\lambda}$, i = 0 or 1 or $\frac{1}{2}$, and therefore $v_i y = 0$. If $v_i \neq 0$, then v_i generates the bimodule V, which implies $V \simeq Irr(\sigma, i, \lambda)$. Lemma 2.7 is proved.

Lemma 2.8. Suppose that $V(\sigma, i, \lambda) \neq (0)$. If $\dim Irr(\sigma, i, \lambda) < \infty$, then $\lambda \in \mathbb{Z}_{\geq 0}$. If i = 0 or 1 and $\lambda \in \mathbb{Z}_{\geq 0}$, then $\dim Irr(\sigma, i, \lambda) < \infty$. For $t \neq \pm 1$ the bimodule $V(\sigma, \frac{1}{2}, 0)$ is infinite dimensional and irreducible.

Proof. From the representation theory of $sl_2(k)$ it follows that $\dim Irr(\sigma, i, \lambda)$ $< \infty$ implies $\lambda \in \mathbb{Z}_{\geq 0}$.

Let $m \in \mathbb{Z}_{\geq 0}$, i = 0 or 1, or $m \in \mathbb{Z}_{>0}$, $i = \frac{1}{2}$. Let us show that $vR(x)^{2m+1}$ generates a proper sub-bimodule V' of $V(\sigma, i, m)$. We have

$$\begin{split} vR(x)^{2m+1}R(y) &= vR(x)^{2m}(R(x)R(y) + R(y)R(x)) - vR(x)^{2m}R(y)R(x);\\ vR(x)^{2m}(R(x)R(y) + R(y)R(x)) &= vR(x)^{2m}(-\frac{1+t}{2}H)\\ &= -\frac{1+t}{2}(m-2m)vR(x)^{2m} = m\frac{1+t}{2}vR(x)^{2m};\\ &[R(x)^2,R(y)] = \frac{1+t}{2}R(x);\\ vR(x)^{2m}R(y) &= \sum_{j=0}^{m-1}vR(x)^{2(m-j-1)}[R(x)^2,R(y)]R(x)^{2j} = m\frac{1+t}{2}vR(x)^{2m-1}. \end{split}$$

This proves that $vR(x)^{2m+1}R(y) = 0$.

If i=0 or 1, then $vR(x)^{2m+1}$ belongs to the $\frac{1}{2}$ -Peirce component. By Lemma 2.6 the sub-bimodule V' is spanned by

$$vR(x)^{2m+1}R(x)^j$$
, $vR(x)^{2m+1}R(x)R(e_1)R(x)^j$, $j \ge 0$.

Since all these elements belong to eigenvalues $\leq -(m+1)$ with respect to H, we conclude that $v \notin V'$.

Let $i=\frac{1}{2}$. The element $vR(x)^{2m+1}R(e_1)R(y)$ belongs to the $\frac{1}{2}$ -Peirce component and $vR(x)^{2m+1}R(e_1)R(y)R(y)=0$. By Lemma 2.6, the sub-bimodule V_1' generated by $vR(x)^{2m+1}R(e_1)R(y)$ is spanned by $vR(x)^{2m+1}R(e_1)R(y)R(x)^j$, $vR(x)^{2m+1}R(e_1)R(y)R(x)R(e_1)R(x)^j$, $j \geq 0$.

Similarly, the sub-bimodule V_2' generated by $vR(x)^{2m+1}R(e_2)R(y)$ is spanned by $vR(x)^{2m+1}R(e_2)R(y)R(x)^j$, $vR(x)^{2m+1}R(e_2)R(y)R(x)R(e_1)R(x)^j$, $j\geq 0$.

The element $vR(x)^{2m+1}R(e_1)$ lies in the 1-Peirce component and

$$vR(x)^{2m+1}R(e_1)R(y) \equiv 0 \bmod V_1'.$$

By Lemma 2.6 the sub-bimodule generated by $vR(x)^{2m+1}R(e_1)$ is spanned by

$$vR(x)^{2m+1}R(e_1)R(x)^j, j \ge 0, \text{mod } V_1'.$$

The sub-bimodule generated by $vR(x)^{2m+1}R(e_2)$ is spanned by

$$vR(x)^{2m+1}R(e_2)R(x)^j, j \ge 0, \text{mod } V_2'.$$

Finally, we conclude that V' is spanned by

$$vR(x)^{2m+1}R(e_k)R(y)R(x)^j,$$

$$vR(x)^{2m+1}R(e_k)R(x)R(e_1)R(x)^j,$$

$$vR(x)^{2m+1}R(e_k)R(x)^j, \quad j \ge 0, \ k = 1 \text{ or } 2.$$

If $m \ge 1$, then all the elements above have weights < m. Hence V' is proper.

It is easy to see that the bimodule $W(\sigma,i,m)=V(\sigma,i,m)/V'$ is finite dimensional. It remains to show that the Verma bimodule $V(\sigma,\frac{1}{2},0)$ is infinite dimensional and irreducible.

We have

$$vR(x)R(y) = v(R(x)R(y) + R(y)R(x)) = -\frac{t+1}{2}vH = 0;$$

$$vR(x)R(e_1)R(y) = v(-R([x,y] \cdot e_1) + R(x \cdot e_1)R(y) - R(y \cdot e_1)R(x)$$

$$+R([x,y])R(e_1)) = \frac{t-1}{4}v;$$

$$vR(x)R(e_2)R(y) = \frac{1-t}{4}v.$$

The Verma module over the Lie algebra $sl_2(k)$ with maximal eigenvalue -1 is irreducible and infinite dimensional (see [J2]).

If $t \neq 1$, then $vR(x) \neq 0$ and $vR(x)R(e_1) \neq 0$. Similarly, $vR(x)R(e_2) \neq 0$. Both elements belong to the eigenvalue -1 with respect to H and

$$vR(x)R(y)^{2} = vR(x)R(e_{1})R(y)^{2} = 0.$$

Hence $\sum_{j=0}^{\infty} kvR(x)^{2j+1}$, $\sum_{j=0}^{\infty} kvR(x)R(e_1)R(x)^{2j}$, $\sum_{j=0}^{\infty} kvR(x)R(e_2)R(x)^{2j}$ are infinite dimensional irreducible $sl_2(k)$ -modules. In particular, the module V is infinite dimensional.

Let V' be a proper nonzero sub-bimodule of $V = V(\sigma, \frac{1}{2}, 0)$. Then $\alpha v R(x)^h + \beta v R(x) R(e_1) R(x)^{h-1} \in V'$ for some $h \ge 1$; $\alpha, \beta \in k$; $(\alpha, \beta) \ne (0, 0)$.

Applying R(x) if necessary, we will assume that h is odd. Then

$$vR(x)R(e_1)R(x)^{h-1}R(e_2) = 0$$

and therefore $\alpha v R(x) R(e_2) R(x)^{h-1} \in V'$.

Suppose that $\alpha \neq 0$. Then $\sum_{j=0}^{\infty} kvR(x)R(e_2)R(x)^{2j} \subset V'$, $vR(x)R(e_2) \in V'$ and, finally, $vR(x)R(e_2)R(y) = \frac{1-t}{4}v \in V'$, a contradiction.

Hence $\alpha=0$, hence $vR(x)R(e_1)R(x)^{h-1}\in V'$. Arguing as above we get $\sum_{j=0}^{\infty}kvR(x)R(e_1)R(x)^{2j}\subseteq V',\ vR(x)R(e_1)\in V',\ vR(x)R(e_1)R(y)=\frac{t-1}{4}v$. Lemma 2.8 is proved.

Remark. In the same way we can prove that if $V(\sigma, i, \lambda) \neq (0)$ and $Irr(\sigma, i, \lambda)$ is infinite dimensional, then $V(\sigma, i, \lambda)$ is irreducible.

Remark. For t=1, $\sum_{j=0}^{\infty} kvR(x)^j + \sum_{j=0}^{\infty} kvR(x)R(e_1)R(x)^j$ is a proper sub-bimodule of $V(\sigma, \frac{1}{2}, 0)$. Hence, dim $Irr(\sigma, \frac{1}{2}, 0) = 1$.

Theorem 2.1. If $t \neq -1$ is not of the type $-\frac{m}{m+2}$, $m \geq 0$; $-\frac{m+2}{m}$, $m \geq 1$; or 1, then the only unital finite dimensional irreducible D_t -bimodules are

(*)
$$Irr(\sigma, \frac{1}{2}, m), \ m \ge 1.$$

If t=1, then add the one-dimensional bimodules $Irr(\sigma, \frac{1}{2}, 0)$, $\sigma = \bar{0}, \bar{1}$ to the series (*).

If $t = -\frac{m+2}{m}$, $m \ge 1$, then add the bimodules $V(\sigma, 1, m)$, $\sigma = \bar{0}, \bar{1}$ to (*). If $t = -\frac{m}{m+2}$, $m \ge 0$, then add the bimodules $V(\sigma, 0, m)$, $\sigma = \bar{0}, \bar{1}$ to (*).

Let $m \in \mathbb{Z}_{>0}$. As in the proof of Lemma 2.8, let V' denote the sub-bimodule of $V(\sigma, i, m)$ generated by $vR(x)^{2m+1}$. We proved that the quotient module $W(\sigma, i, m) = V(\sigma, i, m)/V'$ is finite dimensional

Lemma 2.9. $W(\sigma, i, m)$ is the largest finite dimensional homomorphic image of $V(\sigma, i, m)$.

Proof. Let \tilde{V} be a sub-bimodule of $V(\sigma, i, m)$ such that $\dim V(\sigma, i, m)/\tilde{V} < \infty$. From the representation theory of $sl_2(k)$ it follows that $vR(x)^{2(m+1)} \in \tilde{V}$.

Now $vR(x)^{2(m+1)}R(y)=(m+1)\frac{1+t}{2}vR(x)^{2m+1}$. Hence $vR(x)^{2m+1}\in \tilde{V}$ and therefore $V'\subseteq \tilde{V}$. Lemma 2.9 is proved.

Lemma 2.10. Let V be a unital D_t -bimodule, $t \neq 0, 1$.

- (a) If $V_{\bar{0}} = (0)$, then V = (0).
- (b) Let R be the subalgebra of End(V) generated by all multiplications R(a), $a \in D_t$. Clearly, $R = R_{\bar{0}} + R_{\bar{1}}$, $V_{\bar{i}}R_{\bar{j}} \subseteq V_{\overline{i+j}}$. If $V_{\bar{0}}$ is an irreducible module over $R_{\bar{0}}$, then V is an irreducible D_t -bimodule.

Proof. (a) If $V_{\bar{0}} = (0)$, then $V = V_{\bar{1}}$ and Vx = 0 = Vy.

Since $t \neq 0$, then e_1 and e_2 play a symmetric role and we can assume that $V = \{e_1, V, e_2\}$ or $V = \{e_1, V, e_1\}$.

If $V = \{e_1, V, e_2\}$, then for an arbitrary $v \in V$ we have

$$v(R(x)R(e_1)R(y) - R(y)R(e_1)R(x) + R([x,y]e_1) - R(xe_1)R(y) + R(ye_1)R(x) - R([x,y])R(e_1)) = 0.$$

Hence $ve_1 - (v(e_1 + te_2))e_1 = 0$, that is, $\frac{1}{2}v - \frac{1}{4}(1+t)v = 0$. This implies that $\frac{1-t}{4}v = 0$ and then v = 0 since $t \neq 1$.

If
$$V = \{e_1, V, e_1\}$$
 and $v \in V$, then
$$v(R(x)R(y)R(e_1) - R(e_2)R(y)R(x) + R([xe_2, y]) - R(xe_2)R(y) + R(ye_2)R(x) - R([x, y])R(e_2)) = 0.$$

Then $v(\frac{1}{2}(e_1 + te_2)) - (v(e_1 + te_2))e_2 = \frac{1}{2}v = 0$, that is, v = 0. (b) Let V' be a nonzero D_t -sub-bimodule of V. By (a) $V'_{\bar{0}} \neq (0)$. Since $V'_{\bar{0}}$ is a module over $R_{\bar{0}}$, it follows that $V'_{\bar{0}} = V_{\bar{0}}$. Now $(V/V')_{\bar{0}} = (0)$. By (a) V = V'. Lemma 2.10 is proved.

Let $m \geq 1$, $W = W(1, \frac{1}{2}, m)$. We have

$$vR(x)R(e_1)R(y) = -\frac{(t+1)(m-1)+2}{4}v,$$

$$vR(x)R(e_2)R(y) = -\frac{(t+1)(m+1)-2}{4}v.$$

If $t \neq -\frac{m+1}{m-1}$, $t \neq -\frac{m-1}{m+1}$, then $vR(x)R(e_1) \neq 0$, $vR(x)R(e_2) \neq 0$ in W. In this case, the even part $W_{\bar{0}}$ is a direct sum of two $sl_2(k)$ -modules generated by $vR(x)R(e_1)$, $vR(x)R(e_2)$. Both elements belong to the eigenvalue m-1 with respect to H, hence $\dim W_{\bar 0}=2m$. Let $\xi=-\frac{(1+t)(m-1)+2}{2m(1+t)}$. Then $(\xi vR(x)^2+vR(x)R(e_1)R(x))R(y)^2=0$. In this case $W_{\bar 1}$ is a direct sum of two irreducible $sl_2(k)$ -modules generated

Let
$$\xi = -\frac{(1+t)(m-1)+2}{2m(1+t)}$$
. Then $(\xi vR(x)^2 + vR(x)R(e_1)R(x))R(y)^2 = 0$.

by the elements v and $\xi v R(x)^2 + v R(x) R(e_1) R(x)$ respectively. Hence $dim W_{\bar{1}} =$ (m+1) + (m-1) = 2m.

It is easy to see that in this case the module W is irreducible,

$$W = Irr(1, \frac{1}{2}, m).$$

If $t = -\frac{m+1}{m-1}$, then $vR(x)R(e_1)R(y) = 0$. We remark though that the element $vR(x)R(e_1)$ is not equal to zero in W. Indeed, it follows from Lemma 2.6(a) that $vR(x)R(e_1) \neq 0$ in $V(\sigma, \frac{1}{2}, m)$. Now it remains to notice that all eigenvalues of the operator H that occur in V' are smaller than m-1.

Hence the element $vR(x)R(e_1)$ generates a proper sub-bimodule W' of W. The even part $W_{\bar{0}}'$ is the irreducible $sl_2(k)$ -module, hence W' is irreducible, $W' \simeq$ Irr(0, 1, m - 1).

The even part of the quotient W/W' is an irreducible $sl_2(k)$ -module of dimension m. Hence W/W' is irreducible, $W/W' \simeq Irr(1, \frac{1}{2}, m)$. The odd part $(W/W')_{\bar{1}}$ is also an irreducible $sl_2(k)$ -module generated by v, hence dim(W/W') = m + 1.

If
$$t = -\frac{m-1}{m+1}$$
, then

$$0 \longrightarrow Irr(0,0,m-1) \longrightarrow W \longrightarrow Irr(1,\frac{1}{2},m) \longrightarrow 0$$

is an exact sequence and as above $dimIrr(1, \frac{1}{2}, m) = 2m + 1$.

For $t = -\frac{m+2}{m}$, $m \ge 1$, we have $W(1,1,m) \simeq Irr(1,1,m)$; both the even and the odd parts are irreducible $sl_2(k)$ -modules of dimensions m and m+1 respectively.

For $t = -\frac{m}{m+2}$, $m \ge 0$, $W(1,0,m) \simeq Irr(1,0,m)$ and $Irr(1,0,m)_{\bar{0}}$, $Irr(1,0,m)_{\bar{1}}$ are again irreducible $sl_2(k)$ -modules of dimensions m and m+1 respectively.

Corollary 2.2. The only finite dimensional irreducible bimodules of the (nonunital) Kaplansky superalgebra K_3 are $Irr(\sigma, \frac{1}{2}, m)$, $m \geq 1$, and $Irr(\sigma, 0, 0)$. We have $dimIrr(\sigma, \frac{1}{2}, m) = 4m \text{ if } m \ge 2, \ dimIrr(\sigma, \frac{1}{2}, 1) = 3, \ dimIrr(\sigma, 0, 0) = 1.$

Proof. The unital hull of K_3 is D_t , where t = 0. Every bimodule over K_3 has a structure of a unital bimodule over the unital hull of K_3 . Now it remains to apply Theorem 2.1.

3. Indecomposable modules

Lemma 3.1. Let $W \subseteq \{e_i, V_{\bar{0}}, e_i\}$, i = 1 or 2, be a module over $sl_2(k) = kE + kF + kH$. Then the D_t -sub-bimodule of V generated by W is $\tilde{W} = W + WU(x, y) + WR(x) + WR(y)$.

Proof. It is straightforward that W, WU(x,y), WR(x) + WR(y) belong to 1, 0, $\frac{1}{2}$ -Peirce components respectively. Hence we need only to verify that $\tilde{W}R(x)$, $\tilde{W}R(y)$ lie in \tilde{W} .

We have

$$R(x)R(y) = \frac{1}{2}(U(x,y) - \frac{1+t}{2}H - R(e_1 + te_2));$$

$$R(y)R(x) = \frac{1}{2}(-U(x,y) - \frac{1+t}{2}H + R(e_1 + te_2));$$

$$U(x,y)R(x) = (R(x)R(y) - R(y)R(x) - R(e_1 + te_2))R(x) = R(x)R(y)R(x)$$

$$-R(y)R(x)^2 - R(e_1 + te_2)R(x) = (R(x)R(y) + R(y)R(x))R(x)$$

$$-2R(x)^2R(y) - 2R(yR(x)^2) - R(e_1 + te_2)R(x)$$

$$= -\frac{t+1}{2}HR(x) - (t+1)ER(y) + (t+1)R(x) - R(e_1 + te_2)R(x),$$

which implies that $WU(x,y)R(x) \subseteq \tilde{W}$.

Similarly, $WU(x,y)R(y) \subseteq \tilde{W}$. Lemma 3.1 is proved.

The operator U(x,y) commutes with E,F,H. Let $W\subseteq\{e_1,V_{\bar{0}},e_1\}$ be an irreducible $sl_2(k)$ -module. Then the restriction of U(x,y) to W is an isomorphism $W\to WU(x,y),\ WU(x,y)\subseteq\{e_2,V_{\bar{0}},e_2\}$, or a zero mapping. By Schur's Lemma $U(x,y)_{|W}^2=\alpha Id_W,\ \alpha\in k$.

Let v be a highest weight vector of W, $vR(y)^2 = 0$, vH = mv, $m \in \mathbb{Z}_{>0}$.

Lemma 3.2. If $WU(x,y)^2 \neq (0)$, then \tilde{W} is an irreducible D_t -bimodule.

Proof. We showed above that W+WU(x,y) is a direct sum of two isomorphic irreducible $sl_2(k)$ -modules. Let W' be a nonzero $R_{\bar{0}}$ -submodule of W+WU(x,y), $w_1+w_2U(x,y)\in W',\ w_1,w_2\in W.$ Clearly, $w_1=(w_1+w_2U(x,y))R(e_1)\in W',\ w_2U(x,y)=(w_1+w_2U(x,y))R(e_2)\in W'.$ If $w_1\neq 0$, then $W\subseteq W'$ and $WU(x,y)\subseteq W'$, hence $W'=W+WU(x,y)\neq 0$. If $w_2U(x,y)\neq 0$, then $0\neq w_2U(x,y)^2\in W'$ and we argue as above.

We proved that W + WU(x, y) is an irreducible $R_{\bar{0}}$ -module. By Lemma 2.10(b) the bimodule \tilde{W} is irreducible. Lemma 3.2 is proved.

Similarly, if $W \subseteq \{e_2, V_{\bar{0}}, e_2\}$ is an irreducible $sl_2(k)$ -module and $WU(x, y)^2 \neq (0)$, then \tilde{W} is an irreducible D_t -bimodule.

Lemma 3.3. If $W \subseteq \{e_1, V_{\bar{0}}, e_1\}$ is an irreducible $sl_2(k)$ -module of highest weight m and $WU(x, y)^2 = (0)$, then $t = -\frac{m}{m+2}$ or $-\frac{m+2}{m}$, $m \in \mathbb{Z}_{>0}$.

Proof. Let $w\in W$ be a vector of maximal weight, $wF=0, \ wH=mw$. Hence $w(R(x)\cdot R(y))=-\alpha mw$, with $\alpha=\frac{1+t}{2}$. Then

$$wU(x,y)^{2} = w(2R(x)R(y) - R(x) \cdot R(y) - R(e_{1} + te_{2}))(R(x).R(y) - 2R(y)R(x) - R(e_{1} + te_{2}))$$

$$= w(2R(x)R(y) + \alpha m - 1)(-\alpha m - 2R(xy)R(x) - t)$$

$$= -4\alpha wR(y)R(x) - 2(\alpha m - 1)wR(y)R(x)$$

$$- 2(\alpha m + t)wR(x)R(y) - (\alpha m + t)(\alpha m - 1)w$$

$$= (\alpha m + t)(\alpha m + 1)w.$$

So $wU(x,y)^2=0$, implies that $\alpha m+t=0$ or $\alpha m+1=0$, that is, $t=-\frac{m}{m+2}$ or $t=-\frac{m+2}{m}$.

Definition 3.1. An element v of a unital D_t -bimodule is said to be a highest weight element if vR(y) = 0, $vH = \lambda v$ for some $\lambda \in k$ and v lies in some Peirce component with respect to e_1, e_2 .

Lemma 3.4. An arbitrary finite dimensional unital D_t -bimodule, $t \neq 0, 1$, is generated by its highest weight elements.

Proof. Let V be a nonzero unital D_t -bimodule, $t \neq 0, 1$. Let \tilde{V} be a sub-bimodule generated by all highest weight elements of V. Let $W \subseteq \{e_1, V_{\bar{0}}, e_1\}$ be an irreducible $sl_2(k)$ -submodule with a highest weight element v, that is, vH = mv, $m \in \mathbb{Z}_{\geq 0}$, $vR(y)^2 = 0$, v generates W.

If $WU(x,y)^2 \neq (0)$, then by Lemma 3.2 the bimodule $\tilde{W} = W + WU(x,y) + WR(x) + WR(y)$ is irreducible, hence $\tilde{W} \subseteq \tilde{V}$.

Suppose that $WU(x,y)^2 = (0)$ and therefore $t = -\frac{m}{m+2}$ or $t = -\frac{m+2}{m}$. Let v' = vU(x,y). Then v'H = mv', $v'R(y)^2 = 0$ and v'U(x,y) = 0. We have

Let v' = vU(x, y). Then v'H = mv', $v'R(y)^2 = 0$ and v'U(x, y) = 0. We have $v'R(y) \in \tilde{V}$. Now,

$$v'R(y)R(x) = \frac{1}{2}v'(-U(x,y) - \frac{1+t}{2}H + R(e_1 + te_2)) = \frac{1}{2}(-\frac{1+t}{2}m + t)v'.$$

The element v' lies in \tilde{V} unless $-\frac{1+t}{2}m+t=0$, which is equivalent to $t=-\frac{m}{m-2}$. The latter contradicts our assumption that $t=-(\frac{m+2}{m})^{\pm 1}$. We proved that $v'\in \tilde{V}$.

The element
$$vR(y)$$
 also lies in \tilde{V} . We have

$$vR(y)R(x) = \frac{1}{2}v(-U(x,y) - \frac{1+t}{2}H + R(e_1 + te_2)) = \frac{1}{2}(-\frac{1+t}{2}m + 1)v$$

 $\mod \tilde{V}$.

Hence $v\in \tilde{V}$ unless $-\frac{1+t}{2}m+1=0$, which is equivalent to $t=-\frac{m-2}{m}\neq -(\frac{m+2}{m})^{\pm 1}$. Hence $v\in \tilde{V}$.

We proved that $\{e_1, V_{\bar{0}}, e_1\} \subseteq \tilde{V}$. Similarly, $\{e_2, V_{\bar{0}}, e_2\} \subseteq \tilde{V}$. The even part of the bimodule $\{e_1, V_{\bar{0}}, e_1\} + \{e_2, V_{\bar{0}}, e_2\} + \{e_1, V_{\bar{1}}, e_2\}$ lies in \tilde{V} . By Lemma 2.10(a) $\{e_1, V_{\bar{1}}, e_2\} \subseteq \tilde{V}$. Passing to opposites, we get

$$\{e_1,V_{\bar{1}},e_1\}+\{e_2,V_{\bar{1}},e_2\}+\{e_1,V_{\bar{0}},e_2\}\subseteq \tilde{V}.$$

Hence $\tilde{V} = V$. Lemma 3.4 is proved.

Theorem 3.1. Suppose that t is not of the type $-\frac{m}{m+2}$, $-\frac{m+2}{m}$, 0, 1, $m \in \mathbb{Z}_{>0}$. Then every finite dimensional unital bimodule V over D_t is completely reducible.

Proof. An arbitrary finite dimensional highest weight bimodule over D_t is a homomorphic image of some bimodule $W(\sigma, \frac{1}{2}, m)$, which was shown to be irreducible. Hence V is a sum of irreducible sub-bimodules. Theorem 3.1 is proved.

Theorem 3.2. If $t = -\frac{m+1}{m-1}$ or $t = -\frac{m-1}{m+1}$, $m \ge 2$, then $W(\sigma, \frac{1}{2}, m)$, $\sigma = \bar{0}$ or $\bar{1}$, are the only finite dimensional indecomposible D_t -bimodules, which are not irreducible.

Proof. Let $t = -\frac{m+1}{m-1}$, $m \ge 2$. We have proved that

$$(0) \longrightarrow Irr(0,1,m-1) \longrightarrow W(1,\frac{1}{2},m) \longrightarrow Irr(1,\frac{1}{2},m) \longrightarrow (0)$$

is an exact sequence. Let us show that $W(1,\frac{1}{2},m)$ is not isomorphic to $Irr(0,1,m-1) \oplus Irr(1,\frac{1}{2},m)$. Indeed, in both bimodules the eigenspaces that correspond to the eigenvalue m are one-dimensional. However, in $W(1,\frac{1}{2},m)$ this eigenspace is not killed by $R(x)R(e_1)$, whereas in $Irr(0,1,m-1) \oplus Irr(1,\frac{1}{2},m)$ it is killed by $R(x)R(e_1)$. Hence $W(1,\frac{1}{2},m)$ is indecomposable. Similarly, $W(\bar{0},\frac{1}{2},m)$ is indecomposable.

Now let V be an indecomposable D_t -bimodule. By Lemma 3.4 V is a sum of highest weight bimodules, $V = \sum_{i=1}^{s} V_i$. We showed above that all these bimodules V_i are either irreducible or isomorphic to $W(\sigma, \frac{1}{2}, m)$.

If at least one bimodule, say V_s , is irreducible, then either $V = (\sum_{i=0}^{s-1})V_i \oplus V_s$, which contradicts indecomposability of V or $V = \sum_{i=1}^{s-1} V_i$. Suppose therefore that all summands are of the types $W(0, \frac{1}{2}, m)$, $W(1, \frac{1}{2}, m)$.

Let $V_i \simeq W(0, \frac{1}{2}, m), 1 \le i \le k; V_i \simeq W(1, \frac{1}{2}, m), k + 1 \le i \le s.$

The sub-bimodule $\sum_{i=1}^{k} V_i$ contains only irreducible sub-bimodules of type Irr(1,1,m-1), whereas the sub-bimodule $\sum_{i=k+1}^{s} V_i$ contains only irreducible subbimodules of type Irr(0,1,m-1). The bimodules Irr(1,1,m-1), Irr(0,1,m-1)are not isomorphic.

Hence $V = (\sum_{i=1}^k V_i) \oplus (\sum_{i=k+1}^s V_i)$ is a direct sum, a contradiction. Now suppose that all summands V_i are of the type $W(1, \frac{1}{2}, m)$. Let $v_i \in V_{i\bar{1}}$ be a highest weight element of the bimodule V_i . If $V_s \cap \sum_{i=1}^{s-1} V_i \neq (0)$, then $v_s R(x) R(e_1) \in \sum_{i=1}^{s-1} V_i, \ v_s R(x) R(e_1) = \sum_{i=1}^{s-1} \alpha_i v_i R(x) R(e_1), \ \alpha_i \in k$. We have $(v_s - \sum_{i=1}^{s-1} \alpha_i v_i) R(x) R(e_1) = 0$.

Hence either $v_s - \sum_{i=1}^{s-1} \alpha_i v_i = 0$ or the sub-bimodule V_s' generated by $v_s - \sum_{i=1}^{s-1} \alpha_i v_i$ is isomorphic to $Irr(1, \frac{1}{2}, m)$. Hence either $V = \sum_{i=1}^{s-1} V_i$ or $V = (\sum_{i=1}^{s-1} V_i) \oplus V_s'$.

We proved that $V \simeq W(1,\frac{1}{2},m)$. The case of $t=-\frac{m-1}{m+1},\ m\geq 2$ is treated similarly. Theorem 3.2 is proved.

References

- N. Jacobson, Structure and Representation of Jordan algebras, Amer. Math. Soc., Provi-[J1] dence, R.I., (1969). MR0251099 (40:4330)
- [J2]N. Jacobson, Lie Algebras, Dover Publications, Inc., New York, (1979); Republication of the 1962 original. MR0559927 (80k:17001)

- [J3] N. Jacobson, General representation theory of Jordan algebras, Trans. Amer. Math. Soc. 70, 509-530, (1951). MR0041118 (12:797d)
- [K1] V. G. Kac, Lie Superalgebras, Advances in Mathematics 26, 8-96, (1977). MR0486011 (58:5803)
- [K2] V. G. Kac, Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras, Comm. in Algebra 5 (13), 1375-1400, (1977). MR0498755 (58:16806)
- [Ka1] I. L. Kantor, Connection between Poisson brackets and Jordan and Lie superalgebras, Lie theory, differential equations and representation theory, 213-225, Montreal (1989). MR1121965 (92f:17040)
- [Ka2] I. L. Kantor, Jordan and Lie superalgebras defined by a Poisson algebra, Algebra and Analysis, 55-80. Amer. Math. Soc. Transl. Ser. (2), 151, (1992). MR1191172 (93j:17004)
- [Kp1] I. Kaplansky, Superalgebras, Pacific J. of Math. 86, 93-98, (1980). MR0586871 (81j:17006)
- [Kp2] I. Kaplansky, Graded Jordan Algebras I, Preprint.
- [MZ] C. Martínez and E. Zelmanov, Specializations of Jordan Superalgebras, Canad. Math. Bull. 45 (4), 653-671, (2002). MR1941232 (2003k:17040)
- [ZSSS] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov and A. I. Shirshov, Rings that are nearly associative, Academic Press, New York, 1982. MR0668355 (83i:17001)

Departamento de Matemáticas, Universidad de Oviedo, C/ Calvo Sotelo, s/n, 33007 Oviedo, Spain

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT SAN DIEGO, 9500 GILMAN DRIVE, LA JOLLA, CALIFORNIA 92093-0112 – AND – KIAS, SEOUL 130-012, SOUTH KOREA